Preventing Premature Convergence and Proving the Optimality in Evolutionary Algorithms
نویسندگان
چکیده
Evolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality.
منابع مشابه
A Fast and Reliable Hybrid Algorithm for Numerical Nonlinear Global Optimization
Highly nonlinear and ill-conditioned numerical optimization problems take their toll on the convergence of existing resolution methods. Stochastic methods such as Evolutionary Algorithms carry out an efficient exploration of the searchspace at low cost, but get often trapped in local minima and do not prove the optimality of the solution. Deterministic methods such as Interval Branch and Bound ...
متن کاملAn Improved DPSO Algorithm for Cell Formation Problem
Cellular manufacturing system, an application of group technology, has been considered as an effective method to obtain productivity in a factory. For design of manufacturing cells, several mathematical models and various algorithms have been proposed in literature. In the present research, we propose an improved version of discrete particle swarm optimization (PSO) to solve manufacturing cell ...
متن کاملA modified elite ACO based avoiding premature convergence for travelling salesmen problem
The Travelling Salesmen Problem (TSP) is one of the most important and famous combinational optimization problems that aim to find the shortest tour. In this problem, the salesman starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to depot. Solving this problem seems hard because program statement is simple and leads this problem belonging to NP...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کامل